Bidirectional-genetics platform, a dual-purpose mutagenesis strategy for filamentous fungi.
نویسندگان
چکیده
Rapidly increasing fungal genome sequences call for efficient ways of generating mutants to translate quickly gene sequences into their functions. A reverse genetic strategy via targeted gene replacement (TGR) has been inefficient for many filamentous fungi due to dominant production of undesirable ectopic transformants. Although large-scale random insertional mutagenesis via transformation (i.e., forward genetics) facilitates high-throughput uncovering of novel genes of interest, generating a huge number of transformants, which is necessary to ensure the likelihood of mutagenizing most genes, is time-consuming. We propose a new strategy, entitled the Bidirectional-Genetics (BiG) platform, which combines both forward and reverse genetic strategies by recycling ectopic transformants derived from TGR as a source for random insertional mutants. The BiG platform was evaluated using the rice blast fungus Magnaporthe oryzae as a model. Over 10% of >1,000 M. oryzae ectopic transformants, generated during disruption of specific genes, displayed abnormality in vegetative growth, pigmentation, and/or asexual reproduction. In this pool of putative mutants, we isolated insertional mutants with mutations in three genes involved in histidine biosynthesis (MoHIS5), vegetative growth (MoVPS74), or conidiophore formation (MoFRQ) (where "Mo" indicates "M. oryzae"), supporting the utility of this platform for systematic gene function studies.
منابع مشابه
Bidirectional Genetics Platform : a Dual Purpose Mutagenesis Strategy for 1 Filamentous Fungi
25 26 Rapidly increasing fungal genome sequences call for efficient ways of generating mutants to 27 translate quickly gene sequences into their functions. A reverse genetic strategy via targeted 28 gene replacement (TGR) has been inefficient in many filamentous fungi due to dominant 29 production of undesirable ectopic transformants. Although a large-scale random insertional 30 mutagenesis via...
متن کاملApproaches for refining heterologous protein production in filamentous fungi
Fungi combine the advantages of a microbial system such as a simple fermentability with the capability of secreting proteins that are modified according to a general eukaryotic scheme. Filamentous fungi such as Aspergillus niger efficiently secrete genuine proteins but the secretion of recombinant proteins turned out be a difficult task. Aspergillus niger is an attractive organism because of it...
متن کاملA CRISPR-Cas9 System for Genetic Engineering of Filamentous Fungi
The number of fully sequenced fungal genomes is rapidly increasing. Since genetic tools are poorly developed for most filamentous fungi, it is currently difficult to employ genetic engineering for understanding the biology of these fungi and to fully exploit them industrially. For that reason there is a demand for developing versatile methods that can be used to genetically manipulate non-model...
متن کاملThe bacterial transposon Tn7 causes premature polyadenylation of mRNA in eukaryotic organisms: TAGKO mutagenesis in filamentous fungi.
TAGKO is a Tn7-based transposition system for genome wide mutagenesis in filamentous fungi. The effects of transposon insertion on the expression of TAGKO alleles were examined in Magnaporthe grisea and Mycosphaerella graminicola. Northern analysis showed that stable, truncated transcripts were expressed in the TAGKO mutants. Mapping of the 3'-ends of TAGKO cDNAs revealed that they all contain ...
متن کاملA single amino acid difference is sufficient to elicit vegetative incompatibility in the fungus Podospora anserina.
Vegetative incompatibility is known to limit heterokaryosis in filamentous fungi. It results from genetic differences between incompatible strains at specific loci. The proteins encoded by the two incompatible alleles het-s and het-S of the fungus Podospora anserina differ from each other by 14 amino acids. Two approaches have been used to identify how many and which of these differences are ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eukaryotic cell
دوره 12 11 شماره
صفحات -
تاریخ انتشار 2013